

Automatische Fahrgastzählung

IRMA 6 R2

Produktdatenblatt

IRMA6-R2-SENSOR-HD-00-...[-IO]-00[-R]

Inhaltsübersicht

1	Produkt	3
1.1	Kurzbeschreibung	3
1.2	Produktmodelle	3
1.2.1	Liste der verfügbaren IRMA 6 R2-Modelle	4
1.3	Komponenten	5
1.3.1	Sensoreinheit	5
1.3.2	Interface-Einheit mit M12-Steckverbindern	6
1.3.3	Interface-Einheit mit RJ45-Anschluss	7
2	Technische Daten	8
2.1	Sichtfeld	8
2.2	Allgemeine Daten	9
2.3	Gewicht und Abmessungen	. 10
2.3.1	IRMA 6 mit Interface-Einheit RJ54	. 10
2.3.2	IRMA 6 mit Interface-Einheit ETH oder POE	. 11
2.4	Spannungsversorgung	. 12
2.5	Eingang Türsignal	
3	Sicherheitsfunktionen	. 13
4	Kommunikationsprotokolle	. 14
5	Konformität mit Vorschriften und Normen	. 15
5.1	Allgemein	. 15
5.1.1	Zusätzliche Typprüfungen	. 15
5.2	Automobilanwendungen	. 15
5.3	Bahnanwendungen	. 16
5.3.1	Prüfungen gemäß EN 50155:2021	. 16

Kontaktinformationen

iris-GmbH infrared & intelligent sensors

Schnellerstrasse 1–5 Telefon: +49 30 5858 14-0
12439 Berlin Internet: www.iris-sensing.com

Deutschland

Haftungsausschluss

Die in der IRMA 6-Dokumentation enthaltenen Informationen beruhen auf Produktdaten, die sich aus der Entwicklungs- und Zulassungsphase sowie aus der Produktions- und Felderfahrung ergeben. Diese Dokumente erheben keinen Anspruch auf Fehlerfreiheit und werden aktualisiert oder korrigiert. Solche Änderungen können von der iris-GmbH infrared & intelligent sensors (im Folgenden nur "iris-GmbH") ohne Vorankündigung vorgenommen werden.

Kunden der iris-GmbH dürfen die Dokumentation oder Teile davon zur Erstellung eigener Dokumente verwenden, um den Einsatz des Produkts in ihrer Einsatzumgebung oder in ihrem Projekt zu dokumentieren. Die iris-GmbH ist nicht verantwortlich für die Richtigkeit, Vollständigkeit oder Verwendbarkeit solcher Dokumente. Solche Dokumente liegen in der alleinigen Verantwortung des Erstellers.

Die iris-GmbH empfiehlt, stets einen vollständigen Satz Dokumentation und Software, wie im Dokument *IRMA 6 Systemübersicht* beschrieben, verfügbar zu halten, und diese Dokumentation und Software regelmäßig zu aktualisieren. iris-GmbH informiert ihre Kunden und Vertriebspartner über aktualisierte oder korrigierte Dokumente und Software/Firmware, sobald diese verfügbar sind. Die iris-GmbH übernimmt keine Verantwortung für Dokumentationen oder Software, die unvollständig oder veraltet sind.

Die iris-GmbH stellt im Rahmen des vorgenannten vollständigen Satzes Firmware-Updates zur Verfügung, die auch Sicherheitsupdates enthalten können. Es liegt in der alleinigen Verantwortung der Nutzer, Eigentümer oder Service-Anbieter, die Software der Sensoren regelmäßig zu aktualisieren, um eine Gefährdung der Sensoren oder des Netzwerks zu vermeiden. Die iris-GmbH übernimmt keine Verantwortung für Sicherheitslücken und daraus resultierende Probleme, wenn diese durch die Verwendung veralteter Software oder Firmware ermöglicht wurden, unabhängig davon, ob diese nicht aktualisiert oder auf einen veralteten Stand zurückgesetzt wurde.

Es ist nicht gestattet, die Software oder die Dokumentation, Teile davon oder Dokumente, die Informationen aus der Dokumentation enthalten, ohne vorherige schriftliche Zustimmung der iris-GmbH Dritten zugänglich zu machen.

1 Produkt

1.1 Kurzbeschreibung

IRMA 6 ist ein Sensor für die automatische Fahrgastzählung mit 76.800-Pixel-ToF-Technologie (Time of Flight). Der Sensor ist für Automobil- und Bahnanwendungen ausgelegt und wird über der Tür installiert.

IRMA 6 generiert Zähldaten in Echtzeit, die für die weitere Verarbeitung über Ethernet an den On-Board-Computer weitergeleitet werden.

1.2 Produktmodelle

IRMA 6 R2 ist in drei verschiedenen grundlegenden Modellen erhältlich.

Modelle mit M12-Steckverbindern für Ethernet, Spannungsversorgung und IO

ETH-Modell: Das Interface ist für die Anbindung ans Ethernet über

einen Switch oder Router konzipiert. Der Sensor erfordert eine Spannungsversorgung, typisch 24 V aus der On-Board-Spannungsversorgung des Fahrzeugs.

PoE-Modell: Beim PoE-Modell (Power-over-Ethernet) erfolgt die

Spannungsversorgung über das Ethernet, typisch 48 V. Es wird keine separate Spannungsversorgung benötigt.

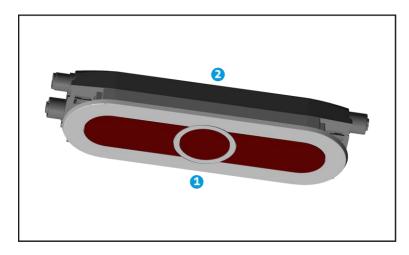
Alle Modelle sind mit einem zusätzlichen IO-Steckverbinder für den Türkontakt verfügbar (IO-Option).

Alle Sensormodelle sind in Ausführungen erhältlich, die den unterschiedlichen Vorschriften für Bahn- und Automobilanwendungen (Bus) entsprechen.

Modell mit RJ45-Anschluss für Ethernet und Einzelader-Anschluss für Spannungsversorgung und IO

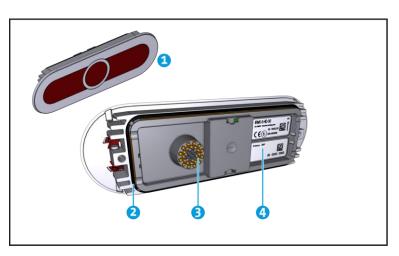
RJ45 -Modell: Das Interface ist für die Anbindung ans Ethernet über einen Switch oder Router konzipiert. Der Sensor erfordert eine Spannungsversorgung, typisch 24 V

Das RJ45-Modell ist für Automobilanwendungen oder stationären Einsatz konzipiert. Aufgrund der Verwendung von Standard-RJ45-Kabeln ist die Widerstandsfähigkeit der Schnittstellen gegenüber mechanischen oder umweltbedingten Belastungen, wie z. B. Vibrationen oder Feuchtigkeit, begrenzt.



1.2.1 Liste der verfügbaren IRMA 6 R2-Modelle

Produktmodell Produktbezeichnung		Artikel-Nr.	Anwendung	Beschreibung
IRMA 6 ETH	IRMA6-R2-SENSOR-HD-00-ETH-IO-00-R	5301_06		Ethernet-Modell, mit IO-Option, Bahnanwendung
	IRMA6-R2-SENSOR-HD-00-ETH-00-R	5301_07	- Dalam	Ethernet-Modell, Bahnanwendung
IRMA 6 POE	IRMA6-R2-SENSOR-HD-00-POE-IO-00-R	5301_08	– Bahn	POE-Modell, mit IO-Option; Bahnanwendung
	IRMA6-R2-SENSOR-HD-00-POE-00-R	5301_09	_	POE-Modell, Bahnanwendung
IRMA 6 ETH	IRMA6-R2-SENSOR-HD-00-ETH-IO-00	5301_00		Ethernet-Modell, mit IO-Option, Automobilanwendung
	IRMA6-R2-SENSOR-HD-00-ETH-00	5301_01	_	Ethernet-Modell, Automobilanwendung
IRMA 6 POE	IRMA6-R2-SENSOR-HD-00-POE-IO-00	5301_02	Automobil	POE-Modell, mit IO-Option, Automobilanwendung
	IRMA6-R2-SENSOR-HD-00-POE-00	5301_03	_	POE-Modell, Automobilanwendung
IRMA 6 RJ45	IRMA6-R2-SENSOR-HD-00-RJ45-IO-00	5301_12	_	RJ45-Modell, mit IO-Option, Automobilanwendung

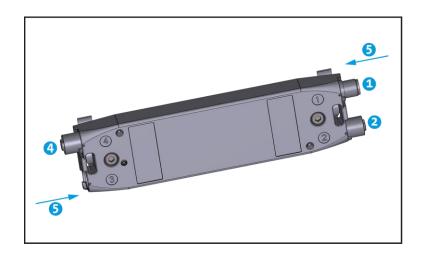

1.3 Komponenten

IRMA 6 besteht aus einer Sensoreinheit und einer Interface-Einheit.

- Sensoreinheit
- 2 Interface-Einheit

1.3.1 Sensoreinheit

- 1 Funktionale Sensorseite hinter den Schutzfenstern befinden sich Laser-Emitter und Time-of-Flight-Sensoren.
- 2 Dichtung zwischen Sensoreinheit und Interface-Einheit.
- 3 Verbindung zur Interface-Einheit
- 4 Etiketten

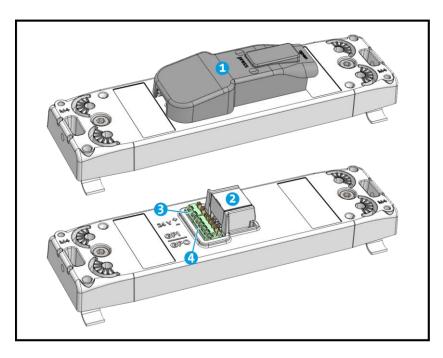

1.3.2 Interface-Einheit mit M12-Steckverbindern

Die Interface-Einheit verbindet den Sensor mit dem Netzwerk und der Spannungsversorgung. Optional können IO-Signale verbunden werden.

Das Bild zeigt das ETH-Modell der Interface-Einheit mit IO-Option. Die anderen Modelle sehen sehr ähnlich aus, haben allerdings weniger Anschlüsse.

X = vorhanden; o = optional; n/a = nicht anwendbar; n/c = nicht verbunden

- Steckverbinder für Stromanschluss (bei ETH-Modell)
- 2 IO-Steckverbinder (optional)
- 4 Ethernet-Steckverbinder


2 Nur POE-Modell, entspricht IEEE 802.3af: Typ 1, Klasse 0, Modus A

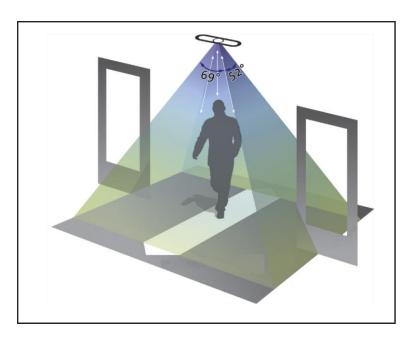
Anschlusstabelle

Nr.	Funktion	Modell: ETH	PoE	Einbau-Steckverbir Sockel-Typ¹	nder	Pinbelegung: 1	2	3	4	5
0	Spannungs- versorgung	х	n/a	M12 Stiftkontakte A-kodiert	3 6 0		VP+	VP-		n/c
2	GPIO (IO-Option)	o	0	M12 Buchsenkontakte B-kodiert	(1) (5) (3) (4)		Türsignal – ürsignal ist bipola 5 Eingang Türsigr	Door clear + r. Die Polarität mu nal, S. 13.	Door clear – Iss nicht beachtet	n/c
4	Ethernet	х	Х	M12 Buchsenkontakte D-kodiert	0 3	TD+ (DC+) ²	RD+ (DC-) ²	TD- (DC+) ²	RD- (DC-) ²	
				lleer of a might resulting	1 B	lickrichtung au	f die Anschlüsse	e: Siehe Pfeile 5	in der Abbildun	g.

1.3.3 Interface-Einheit mit RJ45-Anschluss

- Schutzkappe (Option, erhöht die Schutzklasse auf IP41)
- 2 RJ45-Ethernet-Anschluss
- **3** Federklemmen zum Anschluss der Spannungsversorgung mit Einzeladern
- 4 Federklemmen zum IO-Anschluss mit Einzeladern

Anschlusstabelle


Funktion	Anschluss-Typ		PIN- / K belegun	
Spannungs- versorgung	Federklemmen	24 V _	+	VP+ VP-
IO	Federklemmen	GPI GPI	GPI ¹	Türsignal + Türsignal –
Ю	rederkiemmen	GPO 🖁	GPO ¹	Door clear + Door clear –
			1	TD+
Ethernet	RJ45-Buchse	12345678	2	TD-
cthernet	KJ45-DUCIISE		3	RD+
			6	RD-

1 IO-Anschlüsse (GPI, GPO) sind bipolar, die Polarität muss nicht beachtet werden, vgl. 2.5 Eingang Türsignal, S. 13.

2 Technische Daten

2.1 Sichtfeld

Das Sichtfeld wird von den optischen Öffnungswinkeln des Time-of-Flight-Sensors bestimmt. Bei Öffnungswinkeln von 69° (in Richtung der Türbreite) und 52° (in Bewegungsrichtung der Fahrgäste) ergibt sich die abgedeckte Türbreite aus der Montagehöhe des Sensors, wie in der Tabelle dargestellt.

Das Beleuchtungsfeld wird von den Öffnungswinkeln des vom Sensor ausgestrahlten Infrarotlichts bestimmt.

Für eine sichere Ausleuchtung des Sichtfelds ist das Beleuchtungsfeld etwas größer ausgelegt.

Parameter	Wert	Hinweis
Sichtfeld	69° x 52°	Field of View, FOV
Beleuchtungsfeld	86° x 68°	Field of Illumination, FOI
Montagehöhe	1,80 m bis 2,50 m	Es muss gewährleistet sein, dass die Fahrgäste aufrecht unter dem Sensor hindurchgehen können. Nur dann sind präzise Zählergebnisse garantiert.

Montagehöhe	Maximale abgedeckte Türbreite
1.800 mm	1.250 mm
1.900 mm	1.400 mm
2.000 mm	1.550 mm
2.100 mm	1.700 mm
2.200 mm	1.850 mm
2.300 mm	2.000 mm
2.400 mm	2.150 mm
2.500 mm	2.300 mm

Bei diesen Werten handelt es sich um **Standardwerte**. In den meisten Fällen können größere Bereiche abgedeckt werden.

Für weitere Unterstützung kontaktieren Sie bitte den iris-Kundendienst: https://www.iris-sensing.com/support/

2.2 Allgemeine Daten

Parameter	Wert	Hinweis
Auflösung	320 x 240 px	
Gehäusematerial	Aluminium-Druckguss	
Material für optische Öffnungen	Polycarbonat	
Farbcodierung des Sensors	RAL 9005	äußere vordere Sensoroberfläche mit Perlenstruktur
Innere Abdeckung	Glasfaserverstärkter Kunststoff	Abdeckungen zwischen Sensoreinheit und Interface-Einheit
Umgebungsbedingungen		
Betriebstemperaturbereich (TB)	−25 °C (−13 °F) bis +70 °C (158 °F)	gemäß EN 50155:2017, OT3
Temperaturbereich für Transport und Lagerung	–40 °C (–40 °F) bis +85 °C (185 °F)	
Relative Luftfeuchtigkeit	max. 95 %	
Schutzklasse des Gehäuses (M12-Modelle)	IP65	wenn montiert, gemäß IEC 60529:1989+A1:1999+A2:2013
Schutzklasse des Gehäuses (RJ45-Modell)	IP41	mit Schutzkappe
	IP20	ohne Schutzkappe
IK Schutzklasse	IK06	gemäß EN 50102:1995
Beleuchtung		
Laserklasse	1	gemäß IEC 60825-1:2014, für Normalbetrieb, Einrichtung,
Wellenlänge	850 nm	Wartung
Erforderliche Umgebungsbeleuchtung	Keine	
Mittlere Zeit zwischen Ausfällen (MTBF)	1.24 x 10 ⁶ h	Bedingung: 25 °C, 77 °F
Ethernet	max. 100 Mbit/s	gemäß IEEE 802.3
		für POE-Modell:
		gemäß IEEE 802.3af, Type 1, Class 0 (12.95 W), Mode A

Diam As Jali

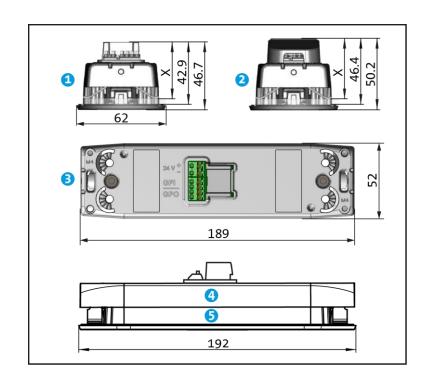
2.3 Gewicht und Abmessungen

			RJ45-Modell		
Parameter	ETH-Modell	PoE-Modell	mit Schutzkappe	ohne Schutzkappe	
Gewicht Sensoreinheit [g]	280 ±2 %	280 ±2 %	280 ±2 %	280 ±2 %	
Gewicht Interface-Einheit [g]	205 ±2 %	191 ±2 %	n	ı/a	
Gesamtgewicht [g]	485 ±2 %	471 ±2 %	n/a		
Gewicht Interface-Einheit mit IO-Option [g]	221 ±2 %	207 ±2 %	193 ±2 %	205 ±2 %	
Gesamtgewicht mit IO-Option [g]	501 ±2 %	487 ±2 %	473 ±2 %	485 ±2 %	
Länge x Breite x Höhe [mm x mm x mm]	24412 (2 22 .2	201.2±2 x 62 x 32,3	r	ı/a	
Länge x Breite x Höhe mit IO Option [mm x mm x mm]	— 211±2 x 62 x 32,3	211±2 x 62 x 32,3	192 x 62 x 46.7	192 x 62 x 50.2	

Die folgenden Skizzen zeigen die Abmessungen des IRMA 6.

2.3.1 IRMA 6 mit Interface-Einheit RJ54

Höhe über der Verkleidung


Die Abmessung X in der Seitenansicht entspricht der Dicke der Interface-Einheit hinter dem Material, an dem der IRMA 6 montiert ist. Es wird berechnet als

X = "Höhe des Sensors – 3.8 mm" – "Materialstärke der Verkleidung".

- RJ45-Modell ohne Schutzkappe
- RJ45-Modell mit Schutzkappe (ungefähr)

Länge x Breite

- 3 Länge x Breite (mm) der RJ45-Interface-Einheit.
- 5 Sensoreinheit mit montierter Interface-Einheit 4. Länge x Breite des kompletten Sensors ist die Länge x Breite der Sensoreinheit 5, 192 mm x 62 mm.

2.3.2 IRMA 6 mit Interface-Einheit ETH oder POE

Höhe über der Verkleidung

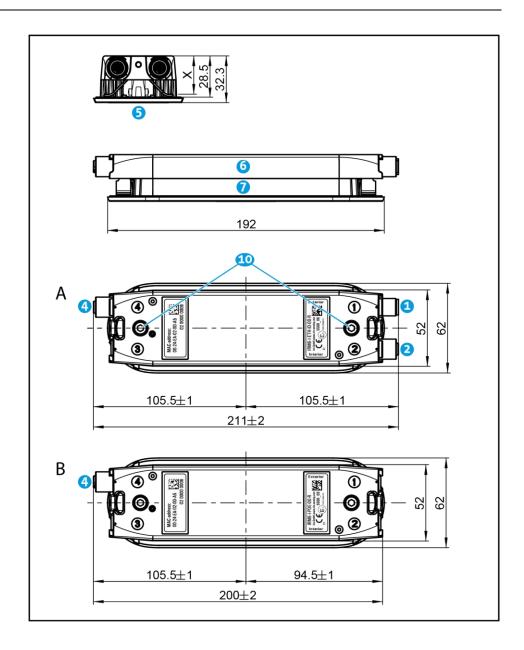
Die Abmessung X in der Seitenansicht 5 entspricht der Dicke der Interface-Einheit hinter dem Material, an dem der IRMA 6 montiert ist. Es wird berechnet als

X = "Höhe des Sensors – 3.8 mm" – "Materialstärke der Verkleidung".

Beispiel: Wenn ein IRMA 6 $\frac{1}{5}$ mit M12-Anschlüssenan einer Verkleidung mit einer Stärke von 4 mm montiert ist, dann ist X = 28.5 mm - 4 mm = 24.5 mm.

Beachten Sie, dass ausreichend Platz zum Anziehen der beiden M5 x 20-Schrauben 10 vorhanden sein muss, mit denen die Interface-Einheit 6 an der Sensoreinheit 7 befestigt ist.

Länge x Breite


Ansicht "A" zeigt das ETH-Modell mit IO-Option. Das ist das einzige Modell mit 3 M12-Anschlüssen (1, 2, 4).

Ansicht "B" zeigt das PoE-Modell ohne IO-Option. Das ist das einzige Modell ohne Anschluss auf der "linken" Seite. Das Modell benötigt nur einen M12-Anschluss 4.

Für alle ETH-Modelle und das POE-Modell mit IO-Option ist die Länge des kompletten Sensors die Länge der Interface-Einheit 6, 211±2 mm.

Für das POE-Modell ohne IO-Option wird die Länge des gesamten Sensors (201,2±2 mm) durch die Kombination aus Sensoreinheit 7 und Interface-Einheit bestimmt.

Die Breite der kompletten Sensoren ist die Breite der Sensoreinheit, 62 mm

2.4 Spannungsversorgung

		Wert für Mo	odell:			
Parameter		ETH	POE	RJ45	Hinweis	
Versorgungsspannung	U _{min}	16 V	n/s	16 V	PoE-Modell: Power-over-Ethernet gemäß IEEE 802.3af:	
	U _{max}	32 V	57 V	32 V	Typ 1, Klasse 0 (12,95 W), Modus A (Strom über Datenkabel)	
	U _{Nenn}	24 V	48 V	24 V	ETH- und RJ45-Modelle: 24 V entsprechend EN 50155:2021 für Bahnversionen, ECE R10/ISO 16750-2 Code F für Automobilversionen	
Stromverbrauch	P _{avg} , Zählung inaktiv	3 W	3 W	3 W	Umgebungstemperatur 25 °C, 77 °F	
	P _{avg} , Zählung aktiv¹	5 W	5 W (V _{POE} = 54 V)	5 W	Für ETH- und RJ45-Modelle:	
	P _{avg_max} , Zählung inaktiv	3.5 W		3.5 W	Versorgungsspannung 24 V	
	P _{avg_max} , Zählung aktiv¹	7 W	6 W (V _{POE} = 48 V)	7 W	 Max. Dauer P_{Peak}: 1,37 ms 	
	P _{Peak} , Zählung inaktiv	13 W		13 W		
	P _{Peak} , Zählung aktiv¹	30 W	15.4 W ²	30 W		

¹ Aktivmodus: Zählung aktiv. Der Sensor befindet sich im Betriebsmodus und die Algorithmen laufen.

Wenn Sie das Energiebudget für den PoE-Switch planen, muss die Spannungsversorgung Spitzenleistung gemäß IEEE 802.3af (15,4 W) liefern. Dabei muss die Kompensierung von Kabelverlusten von bis zu 2,45 W einberechnet werden.

2.5 Eingang Türsignal

Parameter	Wert	Hinweis
Eingang		Bipolar (+/-)
Eingang "low"	−6 V bis +6 V	
Eingang "high"	−60 V bis −9V, +9 V bis +60 V	Schutzgrenze: 60 V
Schaltfrequenz	20 Hz	
Galvanische Isolierung I/O	60 V	
Strom (24 V _{Versorgung})	8 mA	R _{in} : 2,800 Ω
Galvanische Isolierung Versorgungsspannung und Fahrzeugmasse	500 V _{AC}	

3 Sicherheitsfunktionen

Sabotage-Erkennung

Da die Sensoren in einer öffentlich zugänglichen Umgebung eingesetzt werden und ein freies Sichtfeld haben müssen, ist es nicht möglich, die Oberfläche vollständig vor Beschädigungen zu schützen. Der Sensor erkennt und meldet Schäden an der Oberfläche, die für die Funktion kritisch sind.

Cyber-Security-Funktionen

Konfiguration, Aktualisierung und Kommunikation des Sensors und seiner Software sind durch Cyber-Security-Maßnahmen geschützt.

- Verwaltung der Benutzerauthentifizierung.
- Rollenbasierte Zugriffsverwaltung.
- Zertifikatsverwaltung.
- Sicheres Update-Verfahren.

4 Kommunikationsprotokolle

Netzwerk-Kommunikationsprotokolle

Für die Netzwerkkommunikation sind die folgenden Protokolle verfügbar:

DHCP, HTTP, HTTPS, MQTT, SNTP, mDNS, DNS-SD, TCP/IP UDP

Anwendungs-Kommunikationsprotokolle

In der Tabelle sind die verfügbaren Kommunikationsprotokolle für die AFZ-Anwendung aufgeführt.

Protokoll	Kurzbeschreibung
UIPRETROFIT	UIPRETROFIT ist eine Minimalimplementierung des älteren IRMA MATRIX Protokolls UIP für die Nachrüstung. Alle Funktionen von UIP wurden implementiert, mit Ausnahme des Bild-Streamings und des Parameter-/Firmware-Updates.
	Konfiguration und Updates können mit dem IRMA 6 Web-Interface oder der IRMA 6 Web API durchgeführt werden.
IBIS-IP	Der IBIS-IP(VDV 301)-Standard bietet einen IP-basierten, serviceorientierten Nachfolgestandard für IBIS Wagenbus, wie in VDV 300 definiert. IRMA 6 Sensoren implementieren Fahrgastzählung-, Gerätemanagement- und Türstatus-Services. Die Kommunikation erfolgt über formatierte HTTP-XML-Nachrichten. IBIS-IP wird für die folgenden Märkte empfohlen: Deutschland,
	Österreich, Schweiz. Spezifikationen finden Sie auf der Website des VDV:
	https://www.vdv.de/ip-kom-oev.aspx

Protokoll	Kurzbeschreibung
ITxPT	ITxPT ist ein europäischer Standard, der eine serviceorientierte IT-Architektur im Bereich des öffentlichen Verkehrs definiert. IRMA 6 Sensoren implementieren den AFZ- und den Module-Inventory-Service und können mit anderen Diensten der Kommunikationsarchitektur im Fahrzeug interagieren, wie z. B. Zeit- und Vehicle-To-IP-Service.
	Es sind zwei Profile verfügbar:
	Das fahrzeugseitige Profil, bei dem die Kommunikation über HTTP XML formatierte Nachrichten innerhalb des IP-Netzwerks des Fahrzeugs abläuft.
	2 Das Over-the-Air-Profil, bei dem die Zähldaten über MQTT übertragen werden.
	Spezifikationen finden Sie auf der ITxPT-Website: https://itxpt.org/technology/itxpt-specifications/
QIP	QIP (Quick Integration Protocol) ist das Standard-Kommunikationsprotokoll für IRMA 6. Es ist ein HTTP-basiertes Protokoll, das die erforderlichen Funktionen für den Sensorbetrieb bietet. Das Protokoll wird für alle Projekte empfohlen, die nicht ITxPT oder IBIS-IP erfordern. Daten werden im XML-Format ausgetauscht und es gibt verschiedene Konformitätsebenen mit ITxPT.

5 Konformität mit Vorschriften und Normen

In den folgenden Tabellen sind die Normen und Vorschriften aufgeführt, die auf IRMA 6 R2 angewendet werden.

5.1 Allgemein

Vorschrift	Bemerkung
2014/30/EU	Europäische Richtlinie zur Elektromagnetischen Verträglichkeit (EMV)
2011/65/EU 2015/863/EU	Europäische Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (RoHS)
2006/25/EC	Europäische Richtlinie über Mindestvorschriften zum Schutz von Sicherheit und Gesundheit der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen (künstliche optische Strahlung)
Verordnung (EG) Nr. 1907/2006	Europäische Verordnung zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH),
Verordnung (EG) Nr. 1272/2008	Europäische Verordnung über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen (CLP)

Norm	Bemerkung
IEC 60529:1989+A1:1999+A2:2013 EN 60529:1991+A1:2000+A2:2013	Schutzarten durch Gehäuse (IP-Code)
IEC 60825-1:2014	Sicherheit von Lasereinrichtungen - Teil 1: Klassifizierung von Anlagen und Anforderungen

5.1.1 Zusätzliche Typprüfungen

Zusätzliche Typprüfungen	Prüfgrundlage	Grenze/Klasse
Prüfung hinsichtlich Lagerung bei trockener Wärme	IEC 60068-2-2:2007 (Bb)	+85 °C
Prüfung der Schutzart gegen mech. Beanspruchung (IK-Code)	EN 50102:1995	IK06

5.2 Automobilanwendungen

Vorschrift	Bemerkung
UN/ECE-R 118	UN Regelung Nr. 118 der Wirtschaftskommission der Vereinten Nationen für Europa (UN/ECE) – Einheitliche technische Vorschriften über das Brennverhalten und/oder die Eigenschaft von beim Bau von Kraftfahrzeugen bestimmter Klassen verwendeten Materialien, Kraftstoff oder Schmiermittel abzuweisen
UN/ECE R 10	UN Regelung Nr. 10 der Wirtschaftlichen Kommission für Europa der Vereinten Nationen (UN/ECE) – Richtlinie zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (EMV)

Norm	Bemerkung	Grenze
IEC 60721-3-5:1997 EN 60721-3-5:1997	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 5: Einsatz an und in Landfahrzeugen	Tab. 6, cl. 5M3

5.3 Bahnanwendungen

Standard	Note
EN 50155:2021	Bahnanwendungen - Fahrzeuge - Elektronische Betriebsmittel
EN 45545-2:2020	Bahnanwendungen - Brandschutz in Schienenfahrzeugen - Teil 2: Anforderungen an das Brandverhalten von Materialien und Komponenten
IEC 61373:2010 EN 61373:2010	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken
IEC 60721-3-5:1997 EN 60721-3-5:1997	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 5: Einsatz an und in Landfahrzeugen
EN 50121-3-2:2016 + A1:2019	Bahnanwendungen - Elektromagnetische Verträglichkeit - Teil 3-2: Bahnfahrzeuge - Geräte
AK EMV Regelung Nr. EMV 06 vom 09.05.2019	Funkverträglichkeit von Schienenfahrzeugen mit Bahnfunkdiensten (Technische Vorschrift des Eisenbahnbundesamtes, der deutschen Aufsichts- und Genehmigungsbehörde für öffentliche Eisenbahnen)

5.3.1 Prüfungen gemäß EN 50155:2021

Anforderung gemäß EN 50155:2021		Prüfgrundlage	Grenze/Klasse
13.4.1	Sichtprüfung	-	n. a.
13.4.2	Prüfung des Betriebsverhaltens	-	n. a.

Anforderung gemäß EN 50155:2021		Prüfgrundlage	Grenze/Klasse	
13.4.3	Prüfung der Gleichstromversorgung	-	24 V S2 C1	
13.4.4	Prüfung bei niedriger Temperatur	IEC 60068-2-1:2007 (Ad)	OT3 (-25 °C)	
13.4.5	Prüfung mit trockener Wärme	IEC 60068-2-2:2007 (Be)	OT3/ST1 (+85 °C)	
13.4.6	Prüfung hinsichtlich Lagerung bei niedriger Temperatur	IEC 60068-2-1:2007 (Ab)	-40 °C	
13.4.7	Isolationsprüfung	-	> 20 M Ω (at 500 V $_{DC}$)	
13.4.8	Prüfung mit zyklischer feuchter Wärme	EN 60068-2-30:2005 (Db)	+25 bis +55 °C at 95 %rh	
13.4.9	Prüfung der elektromagnetischen Verträglichkeit	EN 50121-3-2:2016 +A1:2019	n. a.	
13.4.10	Schwing- und Schockprüfung	IEC 61373:2010 Pt. 8-10 + IEC 60721-3-5	class B, cat. 1 + Tab. 6, cl. 5M3	
13.4.10.5	Prüfung der Schutzart der Einhausung (IP-Code)	IEC 60529:1989+A1:1999 +A2:2013	IP65	
13.4.11	Auswahlprüfverfahren durch Beanspruchung	IEC 60068-2-64:2008 +A1:2019 + IEC 60068-2-2:2007	n. a.	
13.4.12	Prüfung schneller Temperaturänderungen	IEC 60068-2-14:2009	n. a.	
13.4.13	Salznebelprüfung	IEC 60068-2-11:2021 (Ka)	n. a.	
11.4	Anforderungen an das Brandverhalten	EN 45545-2:2020	HL3	